Defining trend forecasting and building a trend-ready organization
Trend forecasting is the process of analyzing and predicting future patterns and directions in industries, particularly fashion, based on data and insights. Trend forecasting identifies upcoming shifts in consumer preferences to guide businesses in product development and strategic planning.
In this blog, we explore the power of trend forecasting by using consumer insights to predict demand. Learn how to build a trend-ready organization, performing trend analysis on an ongoing basis to build a competitive edge.
Table of Contents
Trend forecasting is the key to unlocking consumer insights. Trend forecasting allows us to predict future consumer preferences by analyzing relevant data in the market. Trend forecasting data can include historical sales data, social media data and other indicators that correlate with consumer sales.
Long-term trend forecasting is forecasting for time horizons of 1+ years or more. It’s a method of trend analysis that means looking at larger shifts in consumer preferences. The trick with long-term forecasting is creating a baseline that can later be adjusted as market trends progress. Long-term forecasting is a critical component of strategic decision making.
On the other hand, short-term forecasting focuses on operational decision making. Short-term forecasting is forecasting for time horizons within one year (within 2 to 3 months). Typically, short-term forecasting occurs in monthly planning meetings where forecasts are adjusted based on in-season trends and demand.
In our perspective, short-term forecasting can become a key competitive advantage if done right. Short-term forecasting involves catching market trends as they occur, and planning strategies to capitalize on them. We recommend acting on market trends unfolding in-season, rather than waiting 6-months and trying to catch them after. We wrote a blog talking about how AI in short-term forecasting can boost demand forecast accuracy by over 20%.
Market trends impact the fashion industry at a higher rate and are critical to the sell-through of products. In this dynamic sector, consumer preferences fluctuate rapidly, making it essential for brands and retailers to align with the latest market trends.
Stocking up on items that miss the trend heavily impact margins, forcing retailers to markdown items or hold excess stock. Leveraging consumer insights and relevant market data is critical in this domain.
By accurately predicting upcoming trends, fashion businesses gain a competitive edge. They can introduce trend-aligned collections ahead of competitors, increasing the likelihood of attracting and retaining customers.
From what we’ve seen, not every trend will be relevant for your strategy. Have a clear criteria set for assessing trends. Consider factors like alignment with brand values, potential for engagement, and resonance with your target audience.
From what we’ve seen working with thousands of products in different domains, it’s important to use a mix of forecasting approaches. We first cluster similar products together and apply forecasting methods to each group.
💡To dive into the details of the best trend analysis methods, we leverage resources from the Institute of Business Forecasting & Planning.
This section provides a step-by-step guide, highlighting the frequency of each step and the groups involved. From our perspective, the step on continuous adjustment and looking at micro trends is a critical adjustment to the process.
STEPS | DESCRIPTION | GROUPS INVOLVED | FREQUENCY |
Assess Available Data Sources & Manage Data Sources | Identify and evaluate the data sources that can provide relevant information for trend analysis. | Data Teams (Data Analysts, Data Engineers), Demand Planners | Periodic (e.g., quarterly) |
Collect and Validate Data from a Large Range of Sources For Forecasting | Gather data from diverse sources, including historical sales data, inventory, social media, and more. | Demand Planners, Data Teams (Data Analysts, Data Engineers) | Regularly (e.g. monthly) |
Cleanse Data for Forecasting | Process and clean the collected data to remove inconsistencies, errors, and outliers. | Demand Planners, Category Managers | Regularly (e.g. monthly) |
Test Various Forecasting Approaches | Experiment with different forecasting models, algorithms, and techniques to assess accuracy. | Data Scientists, Demand Planners | Periodic (e.g., quarterly) |
Run Long-Term Forecast | Generate forecasts for longer time horizons to identify macro trends and strategic opportunities. | Strategic Planning Team, Category Managers | Annual or Semi-annual |
Allocate Inventory | Allocate available inventory based on demand forecasts, ensuring optimal distribution. | Allocation Analysts | As needed based on inventory cycles |
Continuously Adjust Short-Term Forecast | Refine short-term forecasts based on emerging trends and real-time data, adapting to market dynamics. | Demand Planners, Allocation Analysts | Regularly (e.g., weekly, monthly) |
Identify Micro Trends to Capitalize On | Analyze data to detect micro trends or niche opportunities that can be leveraged for competitive advantage. | Marketers, Category Managers | Regularly (e.g., weekly, monthly) |
We surveyed experts from across the industry ask what data would help them improve their forecast accuracy. We summarized it here below and added additional insights from our work in the space.
Effective trend forecasting requires a strategic approach and the utilization of various techniques. Here are some key tips to enhance your trend forecasting efforts:
To capture the full spectrum of emerging trends, make use of a wide range of data sources. Don't limit yourself to just one type of information; consider factors from multiple sources, such as market research, social media trends, consumer feedback, and industry reports. A holistic approach to data collection allows for a more comprehensive understanding of evolving trends.
Trend forecasting is not a one-time event but an ongoing process. Instead of setting a static baseline at the beginning of the year, incorporate real-time adjustments. Be agile and responsive to changing market dynamics and incorporate seasonal fluctuations and other temporal variations into your forecasting model.
You don't need to have all the answers from the outset. Begin by systematically building your trend forecasting capabilities. Start by simply observing new data and trends as they emerge. As you gain insights and confidence, gradually incorporate these findings into your forecasting process. This incremental approach ensures that your forecasting methods evolve in sync with the changing landscape.
How do I choose the right data sources for trend forecasting?
Choosing the right data sources for trend forecasting depends on the product. Some data sources are more powerful for certain products. For example, YouTube works well for products like hair tools, where product reviews are posted. While TikTok & Instagram are better for items like shorts, where micro trends emerge.
What tools can enhance Trend Forecasting?
AI-based tools and predictive analytics software are pivotal for enhancing trend forecasting accuracy. They process large datasets, detect patterns, provide real-time insights, and adapt quickly to changing trends.
What are common challenges in trend forecasting? How can they be overcome?
Challenges in trend forecasting include data quality issues and unpredictable market shifts. Overcoming this involves data cleansing, continuous monitoring of market dynamics, and applying a flexible forecasting approach that adapts to unforeseen changes. We interviewed 87+ experts in the space, find our paper here.
About the Author
Tali Remennik is a Certified Professional Forecaster, certified by the Institute of Business Forecasting and Planning. She is a data scientist working at the intersection of AI, demand forecasting and retail strategy. She is the co-founder of Granularity. Granularity is an AI-powered trends platform AI and data from Tiktok, Instagram, Google and others to predict consumer trends as they emerge.
Learn more about Granularity - trend forecasting using data from Tiktok, Instagram, Amazon and others.
Track what is growing on Tiktok, Instagram, Youtube and Google in one dashboard.